Abstract

The very precise measurement of the anomalous magnetic moment of the muon, recently released by the Muon g-2 experiment at Fermilab, can serve to set stringent constraints on new particles. If the observed 4σ discrepancy from the Standard Model value is indeed real, it will set a tight margin on the scale of the masses and couplings of these particles. Instead, if the discrepancy is simply a result of additional theoretical and experimental uncertainties to be included, strong constraints can be put on their parameters. In this mini-review, we summarize the impact of the latest muon g-2 measurement on new fermions that are predicted by a wide range of new physics models and with exotic quantum numbers and interactions. We will particularly discuss the case of vector-like leptons, excited leptons, and supersymmetric fermions, as well as spin-3/2 isosinglet fermions, which have been advocated recently.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.