Abstract

Quantum computing provides a revolution in computational competences, leveraging the principles of quantum mechanics to process data in fundamentally novel ways. This paper explores the profound implications of quantum computing on cryptography, focusing on the vulnerabilities it introduces to classical encryption methods such as RSA and ECC, and the emergence of quantum-resistant algorithms. We review the core principles of quantum mechanics, including superposition and entanglement, which underpin quantum computing and cryptography. Additionally, we examine quantum encryption algorithms, particularly Quantum Key Distribution (QKD) protocols and post-quantum cryptographic methods, highlighting their potential to secure communications in the quantum era. This analysis emphasizes the urgent need for developing robust quantum-resistant cryptographic solutions to safeguard sensitive information against the imminent threats posed by advancing quantum technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.