Abstract
After fixing the Maximal Abelian gauge in SU(2) lattice gauge theory we decompose the nonabelian gauge field into the so called monopole field and the modified nonabelian field with monopoles removed. We then calculate respective static potentials and find that the potential due to the modified nonabelian field is nonconfining while, as is well known, the monopole field potential is linear. Furthermore, we show that the sum of these potentials approximates the nonabelian static potential with 5% or higher precision at all distances considered. We conclude that at large distances the monopole field potential describes the classical energy of the hadronic string while the modified nonabelian field potential describes the string fluctuations. Similar decomposition was observed to work for the adjoint static potential. A check was also made of the center projection in the direct center gauge. Two static potentials, determined by projected $Z_2$ and by modified nonabelian field without $Z_2$ component were calculated. It was found that their sum is a substantially worse approximation of the SU(2) static potential than that found in the monopole case. It is further demonstrated that similar decomposition can be made for the flux tube action/energy density.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.