Abstract
In this Letter, we study (2 + 1)-dimensional soliton equation by using the bifurcation theory of planar dynamical systems. Following a dynamical system approach, in different parameter regions, we depict phase portraits of a travelling wave system. Bell profile solitary wave solutions, kink profile solitary wave solutions and periodic travelling wave solutions are given. Further, we present the relations between the bounded travelling wave solutions and the energy level h. Through discussing the energy level h, we obtain all explicit formulas of solitary wave solutions and periodic wave solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.