Abstract

ABSTRACTTo unravel the star formation process, we present a multi-scale and multi-wavelength study of the filamentary infrared dark cloud (IRDC) G333.73 + 0.37, which hosts previously known two H ii regions located at its center. Each H ii region is associated with a mid-infrared source, and is excited by a massive OB star. Two filamentary structures and a hub-filament system (HFS) associated with one H ii region are investigated in absorption using the Spitzer 8.0 μm image. The 13CO(J = 2–1) and C18O(J = 2–1) line data reveal two velocity components (around −35.5 and −33.5 km s−1) toward the IRDC, favouring the presence of two filamentary clouds at different velocities. Non-thermal (or turbulent) motions are depicted in the IRDC using the C18O line data. The spatial distribution of young stellar objects (YSOs) identified using the VVV near-infrared data traces star formation activities in the IRDC. Low-mass cores are identified toward both the H ii regions using the ALMA 1.38 mm continuum map. The VLT/NACO adaptive-optics L′-band images show the presence of at least three point-like sources and the absence of small-scale features in the inner 4000 AU around YSOs NIR31 and MIR 16 located toward the H ii regions. The H ii regions and groups of YSO are observed toward the central part of the IRDC, where the two filamentary clouds intersect. A scenario of cloud–cloud collision or converging flows in the IRDC seems to be applicable, which may explain star formation activities including HFS and massive stars.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call