Abstract

To overcome the limitations of absorption refrigeration system brought by commercial working pairs of NH3/H2O and H2O/LiBr for the utilization of low-grade heat, a new class of working pairs consisting of dimethyl ether (DME) and ionic liquids (ILs) are developed. The solubilities of DME in three ILs [BMIM][BF4], [BMIM][PF6] and [BMIM][Tf2N] were firstly measured and correlated. Then, COPs of the single-effect absorption refrigeration system (ARS) and absorption-compression hybrid refrigeration system (ACRS) using DME/IL were calculated under different conditions. The maximum COP of ARS using the three DME/IL working pairs can be up to 32.0% larger than that using NH3/H2O, while the maximum COP of ACRS using the three DME/IL working pairs can be up to 38.3% larger than that using NH3/H2O under studied conditions. The three DME/IL working pairs also show much better cooling performance than HFC/IL and HFO/IL working pairs which are R152a/[HMIM][Tf2N] and R1234ze(E)/[HMIM][Tf2N]. In ACRS, DME/ILs can drop the optimal generation temperature in ARS by more than 10 K. DME/ILs are very promising alternative absorption refrigeration working pairs due to the high COP, wide applicability and environmental friendliness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.