Abstract

A series of enantioenriched β-indolyl ketones as aromatase inhibitors (AI) is synthesized through the Michael-type Friedel-Crafts alkylation of indole. A highly efficient bifunctionalized amino catalyst is developed to access structurally diverse β-indolyl ketones in high yields (up to 91%) and excellent enantioselectivity (enantiomeric ratio up to 98:2). All the synthesized compounds demonstrated promising aromatase inhibitory potential, where ortho-substituted analogs (3c and 3e) were found most active with IC50 values of 0.68 and 0.90 µM, respectively. Both of these compounds exhibited significant cytotoxicity (IC50 = 0.34 and 0.37 µM) against the MCF-7 breast cancer cell line in the (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay. Molecular docking studies of the synthesized compounds demonstrate favorable binding interactions with the estrogens controlling CYP19A1 (3EQM) and metabolizing CYP3A4 (5VCC) enzymes. Molecular dynamic (MD) simulation analysis revealed the essentiality of heme-ligand interactions to build a stable protein-ligand complex. An average root mean square deviation of 0.35 nm observed during a 100-ns MD simulation and binding free energy in the range of -190 to -227 kJ/mol calculated by g_mmpbsa analysis authenticated the stability of the 3c-3EQM complex. ADMET and drug-likeness parameters supported the suitability of these indole derivatives as the drug lead to develop potent inhibitors for estrogen-dependent breast cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.