Abstract

ABSTRACT The objective of this research is to develop novel empirical equations to predict the extreme void ratios of sand-fly ash mixtures. These equations rely on multiple variables derived from the particle morphology properties of three different types of sandy materials. These sands are mixed with varying fractions of spherical fly ash particles, ranging from 0% to 30% fly ash content. High-quality microscope images of individual particles are used to determine the particle morphology properties. The analysis of the results confirms that combining these particle morphology properties (Acom, Scom, ARcom, Cxcom, and ORcom) provides suitable factors for predicting the extreme void ratios of the examined sand-fly ash mixtures. Furthermore, the study clearly demonstrates the significant influence of particle morphology on the packing density of the materials. The developed multi-variable functions can be systematically employed to predict the limit void ratios of sand-fly ash mixtures commonly encountered in various geotechnical engineering applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.