Abstract
The main purpose of upscaling in reservoir simulation is to capture the dynamic behavior of fine scale models at the coarse scale. Traditional static or dynamic methods use assumptions about the boundary conditions to determine the upscaled properties. In this paper, we show that the upscaled properties are strongly dependent on the flow process observed at the fine scale. We use a simple no-crossflow depletion drive process and demonstrate that an upscaled property is not a constant value. Instead, if the goal is to match the performance of the fine scale model, the upscaled permeability changes with time. We provide an analytical solution to determine the upscaled permeability and present the value of upscaled permeability under limiting conditions. Our equation suggests that it is possible that upscaled value can fall outside the range of fine scale values under certain conditions. We show that for pseudo steady state flow, using common averaging methods like arithmetic or even geometric averaging methods can lead to optimistic results. We also show that the no-crossflow solution is significantly different than crossflow solution at late times. We validate our method by comparing the results of the method with flow simulation results in two and multi-layered models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.