Abstract

The European Fusion Development Agreement’s mission for JET is the development of ITER scenarios exploiting the specific properties of the device. This task requires significant improvements in the measuring techniques. The most innovative diagnostic upgrades are in the fields of edge measurements, detection of fast magnetohydrodynamics modes and “burning plasma” diagnostics. The importance of plasma-wall interactions, and, in particular, the issue of tritium inventory promoted the development of the quartz microbalance, a detector with improved time resolution to measure material redeposition in the remote areas of the inner divertor. Measurement of Alfvén cascades with unprecedented spectral resolution, reaching a toroidal n number of up to 16, was obtained using an O-mode microwave reflectometer as an interferometer. For the diagnosis of the fusion products, a new approach is being developed to measure the He ash based on double charge exchange between thermalized particles and neutrals from JET beams. There have been several upgrades of the neutron diagnostic systems, one of which, the new time of flight neutron spectrometer designed for high counting rates is described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.