Abstract

Theoretical quantifications of hydrogen bonding (HB) basicities and acidities, originally developed for aliphatic systems (J. Chem. Inf. Comput. Sci. 2004, 44, 1042-1055), are now extended to cover aromatic, heterocyclic, anionic, cationic and zwitter-ionic molecular fragments, thus encompassing a majority of druggable chemical space. The addition of terms accounting for cavity formation, polarity, hydrophobicity, and resonance allowed us to derive a new equation able to predict accurately free energies of solvation of diverse solutes, interphase transfers, and aqueous solubilities (log S(w)). We thus provide a "universal solvation equation" (USE) available for the accurate estimation of desolvation energies in protein-ligand docking, for the prediction of many physical and ADMET properties, and for studying fluid phase equilibria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.