Abstract

We present a computational scheme for predicting the ligands that bind to a pocket of a known structure. It is based on the generation of a general abstract representation of the molecules, which is invariant to rotations, translations, and permutations of atoms, and has some degree of isometry with the space of conformations. We use these representations to train a nondeep machine learning algorithm to classify the binding between pockets and molecule pairs and show that this approach has a better generalization capability than existing methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.