Abstract

This paper presents an innovative machine learning approach for the formulation of load carrying capacity of castellated steel beams (CSB). New design equations were developed to predict the load carrying capacity of CSB using linear genetic programming (LGP), and an integrated search algorithm of genetic programming and simulated annealing, called GSA. The load capacity was formulated in terms of the geometrical and mechanical properties of the castellated beams. An extensive trial study was carried out to select the most relevant input variables for the LGP and GSA models. A comprehensive database was gathered from the literature to develop the models. The generalization capabilities of the models were verified via several criteria. The sensitivity of the failure load of CSB to the influencing variables was examined and discussed. The employed machine learning systems were found to be effective methods for evaluating the failure load of CSB. The prediction performance of the optimal LGP model was found to be better than that of the GSA model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.