Abstract

We show that k=w+2 mutually unbiased bases can be constructed in any square dimension d=s^2 provided that there are w mutually orthogonal Latin squares of order s. The construction combines the design-theoretic objects (s,k)-nets (which can be constructed from w mutually orthogonal Latin squares of order s and vice versa) and generalized Hadamard matrices of size s. Using known lower bounds on the asymptotic growth of the number of mutually orthogonal Latin squares (based on number theoretic sieving techniques), we obtain that the number of mutually unbiased bases in dimensions d=s^2 is greater than s^{1/14.8} for all s but finitely many exceptions. Furthermore, our construction gives more mutually unbiased bases in many non-prime-power dimensions than the construction that reduces the problem to prime power dimensions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.