Abstract

New first-order and second-order energy preserving schemes are proposed for the Zakharov system. The methods are fully implicit and semi-explicit. It has been found that the first order method is also massconserving. Concrete schemes have been applied to simulate the soliton evolution of the Zakharov system. Numerical results show that the proposed methods capture the remarkable features of the Zakharov equation. We have obtained that the semi-explicit methods are more efficient than the fully implicit methods. Numerical results also demonstrate that the new energy-preserving schemes accurately simulate the soliton evolution of the Zakharov system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.