Abstract
Abstract Several thermal energy storage (TES) systems have been developed and tested to be integrated in concentrating solar power (CSP) systems. Recent studies show that concrete as storage media has the potential to become an interesting solution due to its properties such as relatively high specific heat and thermal conductivity, good mechanical properties, a thermal expansion coefficient similar to that of steel pipe and low cost of a material that is easy to obtain and process. This article outlines a new 100 kW th solar beam-down facility for testing high temperature concrete storage at 393°C and the first project to use the facility for TES testing in collaboration with NEST. Initial concrete characterization and testing results which show promising thermal and mechanical performance, are also presented. The CSP hot oil-loop has been modified and instrumented to perform research and testing of TES systems in real solar radiation conditions. Experimental TES system testing at real scale with a total storage capacity of 1.0 MWh th is planned to begin operation early 2015.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.