Abstract

This paper aims to develop a bidirectional on-board battery charger for electric vehicles (EVs). The studied battery charger is composed of a bidirectional ac-dc converter as the first stage of conversion and a bidirectional dc-dc converter as the second stage. The first one is controlled by a predictive direct power control strategy based on a space vector modulation technique known as P-SVM-DPC, and the second is used to regulate the battery current and regulate the power direction flow by using a direct current control technique. The choice of its topology has taken into consideration the grid-to-vehicles (G2V) and vehicle-to-grid (V2G) power flow directions. During charging or discharging, the DC/DC converter acts likes a buck or boost converter. Using MATLAB/Simulink software, the performance of the battery charger is examined in various operating modes, such as fast charging and quick discharging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.