Abstract
In this paper we present six classes of topological quantum codes (TQC) on compact surfaces with genus $g\ge 2$. These codes are derived from self-dual, quasi self-dual and denser tessellations associated with embeddings of self-dual complete graphs and complete bipartite graphs on the corresponding compact surfaces. The majority of the new classes has the self-dual tessellations as their algebraic and geometric supporting mathematical structures. Every code achieves minimum distance 3 and its encoding rate is such that $\frac{k}{n} \rightarrow 1$ as $n \rightarrow \infty$, except for the one case where $\frac{k}{n} \rightarrow \frac{1}{3}$ as $n \rightarrow \infty$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.