Abstract
AbstractMost synthetic polymers are distributed in more than one parameter of molecular heterogeneity. For hydrophobic copolymers there are different chromatographic techniques available to analyse these distributions. As a result of the increasing interest in hydrophilic polymers and copolymers new chromatographic techniques are developed for the characterization of these polymers as well. However, very frequently these polymers contain highly polar or charged functional groups making them soluble only in aqueous mobile phases. There are several problems related to the use of aqueous mobile phases in polymer chromatography. Even the SEC analysis of such copolymers is not straightforward. As for HPLC in aqueous mobile phases, there are only a few applications in the literature so far. In addition to the fact that only a very limited number of stationary phases is available for aqueous HPLC of polymers, the interactions of polyelectrolytes in such chromatographic systems are not well understood.The present paper addresses the problems related to the application of SEC and HPLC in aqueous mobile phases. For graft copolymers with a polyethylene oxide backbone, e.g. PEG‐g‐polymethacrylic acid and PEG‐g‐polyvinyl alcohol, it will be shown that methods can be developed that give accurate molar mass and chemical composition information. Two‐dimensional chromatography where aqueous HPLC and SEC are coupled on‐line will be shown to be the most powerful analysis tool for the analysis of such copolymers. The hyphenation of the chromatographic separation techniques with spectroscopic detection techniques provides further insight into the molecular complexity of these copolymers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.