Abstract
UV–Vis spectroscopy was used to investigate two new charge transfer (CT) complexes formed between the K+-channel-blocker amifampridine (AMFP) drug and the two π-acceptors 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) and tetracyanoethylene (TCNE) in different solvents. The molecular composition of the new CT complexes was estimated using the continuous variations method and found to be 1:1 for both complexes. The formed CT complexes’ electronic spectra data were further employed for calculating the formation constants (KCT), molar extinction coefficients (εCT), and physical parameters at various temperatures, and the results demonstrated the high stability of both complexes. In addition, sensitive spectrophotometric methods for quantifying AMFP in its pure form were proposed and statistically validated. Furthermore, DFT calculations were used to predict the molecular structures of AMFP–DDQ and AMFP–TCNE complexes in CHCl3. TD-DFT calculations were also used to predict the electronic spectra of both complexes. A CT-based transition band (exp. 399 and 417 nm) for the AMFP–TCNE complex was calculated at 411.5 nm (f = 0.105, HOMO-1 → LUMO). The two absorption bands at 459 nm (calc. 426.9 nm, f = 0.054) and 584 nm (calc. 628.1 nm, f = 0.111) of the AMFP–DDQ complex were theoretically assigned to HOMO-1 → LUMO and HOMO → LUMO excitations, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.