Abstract

Starting from the Boltzmann equation, new boundary conditions are derived to be matched with the Navier—Stokes equations, that are supposed to hold in the main body of a gas. The idea upon which this method is based goes back to Maxwell and Langmuir. Since the distribution function is supposed to be completely determined by the Navier—Stokes equations, this new set of boundary conditions extends in some sense the validity of the macroscopic equations to the transition and free molecular régimes. In fact, it is shown that the free molecular and slip flow régimes are correctly described by this method; the latter is also supposed to give a reasonable approximation for the complete range of Knudsen numbers. The new procedure is applied to different problems such as plane Couette flow, plane and cylindrical Poiseuile flow, heat transfer between parallel plates and concentric cylinders. Results are obtained and compared with the exact numerical solutions for the above-mentioned problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.