Abstract

The present paper is based on the assumption that heavy quarks bound states exist in the Standard Model (SM). Considering New Bound States (NBS) of top-anti-top quarks (named T-balls) we have shown that: 1) there exists the scalar 1S-bound state of 6t+6\bar t; 2) the forces which bind the top-quarks are very strong and almost completely compensate the mass of the twelve top-anti-top-quarks in the scalar NBS; 3) such strong forces are produced by the Higgs-top-quarks interaction with a large value of the top-quark Yukawa coupling constant g_t\simeq 1. Theory also predicts the existence of the NBS 6t + 5\bar t, which is a color triplet and a fermion similar to the t'-quark of the fourth generation. We have also considered the "b-quark-replaced" NBS. We have estimated the masses of the lightest fermionic NBS: M_{NBS}\gtrsim 300 GeV, and discussed the larger masses of T-balls. Searching for heavy quarks bound states at the Tevatron and LHC is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.