Abstract
In this study, a series of bis– and tetrakis–1,2,3–triazole derivatives were synthesized using copper-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry in 73–95% yield. The bis– and tetrakis–1,2,3–triazoles exhibited significant DNA cleavage activity while the tetrakis–1,2,3–triazole analog 6g completely degraded the plasmid DNA. Molecular docking simulations suggest that compound 6g acts as minor groove binder of DNA by binding through several noncovalent interactions with base pairs. All bis- and tetrakis–1,2,3-triazole derivatives were screened for antibacterial activity against E. coli, B. cereus, S. aureus, P. aeruginosa, E. hirae, L. pneumophila subsp. pneumophila strains and antifungal activity against microfungus C. albicans and C. tropicalis strains. Compound 4d exhibited the best antibacterial activity among bis–1,2,3–triazoles against E. coli and E. hirae, while 6c exhibited the best antibacterial activity among tetrakis–1,2,3–triazoles against E. hirae. Furthermore, the best antifungal activity against C. albicans and C. tropicalis was reported for the compound 5, while 6d displayed the best antifungal activity against C. tropicalis and C. albicans. Reasonable iron chelating activities and DPPH radical scavenging abilities were found for some of the compounds. Finally, the acid dissociation constants (pKa) of the bis–1,2,3–triazoles were also determined with the help of HYPERQUAD program using the data obtained from potentiometric titrations. The reported data here concludes that the bis- and tetrakis-1,2,3-triazoles are important cores that should be considered for further development of especially new anticancer agents acting through the DNA cleavage activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.