Abstract
Optimization problem, as a hot research field, is applied to many industries in the real world. Due to the complexity of different search spaces, metaheuristic optimization algorithms are proposed to solve this problem. As a recently introduced optimization method inspired by physics, Archimedes Optimization Algorithm (AOA) is an efficient metaheuristic algorithm based on Archimedes' law. It has the advantages of fast convergence speed and balance between local and global search ability when solving continuous problems. However, discrete problems exist more in practical applications. AOA needs to be further improved in dealing with such problems. On this basis, to make Archimedes Optimization Algorithm better applied to solve discrete problems, a Binary Archimedes Optimization Algorithm (BAOA) is proposed in this paper, which incorporates a novel V-shaped transfer function. The proposed method applies the BAOA to COVID-19 classification of medical data, segmentation of real brain lesion, and the knapsack problem. The experimental results show that the proposed BAOA can solve the discrete problem well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.