Abstract

AbstractThe total electron content (TEC) data measured by the Jason, CHAMP, GRACE, and SAC‐C satellites, the in situ electron densities from CHAMP and GRACE, and the vertical E × B drifts from the ROCSAT, have been utilized to examine the ionospheric response to the October 2003 superstorms. The combination of observations from multiple satellites provides a unique global view of ionospheric storm effects, especially over the Pacific Ocean and American regions, which were under sunlit conditions during the main phases of the October 2003 superstorms. The main results of this study are as follows: (1) There were substantial increases in TEC in the daytime at low and middle latitudes during both superstorms. (2) The enhancements were greater during the 30 October superstorm and occurred over a wider range of local times. (3) They also tended to peak at earlier local times during this second event. (4) These TEC enhancement events occurred at the local times when there were enhancements in the upward vertical drift. (5) The strong upward vertical drifts are attributed to penetration electric fields, suggesting that these penetration electric fields played a significant role in the electron density enhancements during these superstorms. Overall, the main contribution of this study is the simultaneous view of the storm time ionospheric response from multiple satellites, and the association of local time differences in ionospheric plasma response with measured vertical drift variations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call