Abstract

We have investigated new approaches to the formation of conducting nanowires on crystalline silicon surfaces using atomic force microscope (AFM) lithography. To increase processing speed and reduce wear of the AFM tip, large-scale structures are formed with a direct laser write setup, while the AFM is used to add the finer nanostructures. Both methods are based on selective oxidation of hydrogen-passivated silicon and subsequent etching to define conducting regions on the surface. This combined technique has previously been implemented on amorphous Si on oxide. To extend the technique to form crystalline silicon nanowires, we have used an arsenic implanted crystalline silicon layer on p-type Si, where the nanostructures are isolated from the substrate electrically due to p-n junction formation. Improvements in the reliability of the AFM lithography technique were achieved by using all-metal tips, which do not wear out as rapidly as metal-coated Si3N4 tips.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.