Abstract

Abstract The article presents the developed anaerobic-aerobic wastewater treatment technologies. These technologies aimed at removing the organic matter, nitrogen and phosphorus by means of microorganisms immobilized on fibrous carrier surfaces. The results of the laboratory research show the high efficiency of milk wastewater treatment. The following degrees of reduction were achieved for the pollutant indicators: COD -86.7-93 %, total nitrogen - 96.9-97.9 %. Compared to the traditional treatment technologies applied in Ukraine, these values are high. The concentration of organic matters and biomass of not attached bacteria decreased in bioreactor chambers. When the purification process ends, a small amount of excess biomass remains; therefore, its self-oxidation and self-regulation occurs as a result of consumption by the organisms occupying higher levels of trophic chains. The use of anaerobic-aerobic bioreactors system for the treatment of wastewater enables achieving high outflow quality and prevents the suspended substances from slipping. Immobilization of microorganisms on the first stage of the technology prevents the formation of big amount of excessive sludge and removes biomass from the bioreactor, which allows the technology even for the heavily polluted wastewater. In reactors containing immobilized microorganisms, the organic matter compounds used in subsequent reactors for phosphate accumulation are split. The presented biotechnology saves electric energy, provides sufficient quality of treatment, and ensure the compliance of treated wastewater with the effluent standards.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.