Abstract

ABSTRACTPtSi is one of the most used silicides in infrared Schottky barrier detectors due to its low Schottky barrier to p-type Si ( Øb ∼ 0.23 eV). Control of the thickness and uniformity of the silicide layer is fundamental for a good infrared detector performance, since the silicide thickness has to be in the range of 3 to 8 nm. Such thin layers are usually made by evaporation of Pt followed by a furnace annealing. We will show different approaches for fabrication of utra-thin PtSi layers. In all of the processes, high-vacuum sputtering is used for Pt deposition and the silicidation is performed in a rapid thermal annealing system. Smooth and uniform Pt Si layers down to 3 nm thick are formed in this way. It will be shown that the controllability of the thickness during sputter deposition is not a critical issue and the deposition process has a large process window. Moreover, when taking an optimal approach, a large process window can also be found for the RTA step. The implementation of these approaches for device fabrication and some electrial results of diodes made with them will also be presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.