Abstract

We have reconsidered the problem of the critical layer thickness hc for growth of strained heterolayers on lattice-mismatched substrates, using a new approach which allows us to determine the spatial distribution of stresses in a bi-material assembly and include the effects of a finite size of the sample. The possibility of dislocation-free growth of lattice-mismatched materials on porous silicon substrates is discussed as an example of a more general problem of heteroepitaxial growth on small seed pads of lateral dimension l, having a uniform crystal orientation over the entire substrate wafer. It turns out that for a given mismatch f, the critical film thickness hlc strongly depends on l, rising sharply when the latter is sufficiently small, l≲lmin. The characteristic size lmin( f ) below which, effectively, hlc( f )→∞, is determined in terms of the experimentally known (or calculated for growth on a monolithic substrate) function h∞c( f )≡hc( f ). When l≲lmin, then the entire elastic stress in the epitaxial film will be accommodated without dislocations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.