Abstract

In many applications in metallography and analysis, many regions need to be considered and not only the current region. In cases where there are analyses with multiple images, the specialist should also evaluate neighboring areas. For example, in metallurgy, welding technology is derived from conventional testing and metallographic analysis. In welding, these tests allow us to know the features of the metal, especially in the Heat-Affected Zone (HAZ); the region most likely for natural metallurgical problems to occur in welding. The expanse of the Heat-Affected Zone exceeds the size of the area observed through a microscope and typically requires multiple images to be mounted on a larger picture surface to allow for the study of the entire heat affected zone. This image stitching process is performed manually and is subject to all the inherent flaws of the human being due to results of fatigue and distraction. The analyzing of grain growth is also necessary in the examination of multiple regions, although not necessarily neighboring regions, but this analysis would be a useful tool to aid a specialist. In areas such as microscopic metallography, which study metallurgical products with the aid of a microscope, the assembly of mosaics is done manually, which consumes a lot of time and is also subject to failures due to human limitations. The mosaic technique is used in the construct of environment or scenes with corresponding characteristics between themselves. Through several small images, and with corresponding characteristics between themselves, a new model is generated in a larger size. This article proposes the use of Digital Image Processing for the automatization of the construction of these mosaics in metallographic images. The use of this proposed method is meant to significantly reduce the time required to build the mosaic and reduce the possibility of failures in assembling the final image; therefore increasing efficiency in obtaining results and expediting the decision making process. Two different methods are proposed: One using the transformed Scale Invariant Feature Transform (SIFT), and the second using features extractor Speeded Up Robust Features (SURF). Although slower, the SIFT method is more stable and has a better performance than the SURF method and can be applied to real applications. The best results were obtained using SIFT with Peak Signal-to-Noise Ratio = 61.38, Mean squared error = 0.048 and mean-structural-similarity = 0.999, and processing time of 4.91 seconds for mosaic building. The methodology proposed shows be more promissory in aiding specialists during analysis of metallographic images.

Highlights

  • Many studies have been carried out on the segmentation of digital images, which seek to overcome the limitations of the various methods currently used in specific applications

  • According to [3], in welding, this test allows us to know the metal features, especially in the Heat Affected Zone (HAZ); the region most likely for natural metallurgical problems to occur in welding

  • The images used in this paper are from a study that analyzes the effect on the increasing the molybdenum content of the naphthenic corrosion resistance, microstructural changes, mechanical properties and weldability of Fe-Cr-Mo with Mo content higher than used in commercial alloys

Read more

Summary

Introduction

Many studies have been carried out on the segmentation of digital images, which seek to overcome the limitations of the various methods currently used in specific applications. Existing techniques are improved and new methods developed. Tools and methodologies are presented that enable the use of Digital Image Processing techniques on the metallographic analysis of metallic materials from metallurgical processes. The mosaic technique is used to construct scenes and environments through small images with corresponding characteristics. The final result is a larger image generated from smaller images that were processed. In accordance with the generated image, it will be possible to more thoroughly analyze and process to obtain exacting results

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.