Abstract

In this work, automated abnormality detection using keypoint information from Speeded-Up Robust feature (SURF) and Scale Invariant Feature Transform (SIFT) descriptors in chest Radiographic (CR) images is investigated and compared. Computerized image analysis using artificial intelligence is crucial to detect subtle and non-specific alterations of Tuberculosis (TB). For this, the healthy and TB CRs are subjected to lung field segmentation. SURF and SIFT keypoints are extracted from the segmented lung images. Statistical features from keypoints, its scale and orientation are computed. Discrimination of TB from healthy is performed using SVM. Results show that the SURF and SIFT methods are able to extract local keypoint information in CRs. Linear SVM is found to perform better with precision of 88.9% and AUC of 91% in TB detection for combined features. Hence, the application of keypoint techniques is found to have clinical relevance in the automated screening of non-specific TB abnormalities using CRs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.