Abstract

ObjectiveDue to the capacity of the amniotic membrane (Am) to support re-epithelisation and inhibit scar formation, Am has a potential to become a considerable asset for reconstructive urology i.e., reconstruction of ureters and urethrae. The application of Am in reconstructive urology is limited due to a poor mechanical characteristic. Am reinforcement with electrospun nanofibers offers a new strategy to improve Am mechanical resistance, without affecting its unique bioactivity profile. This study evaluated biocomposite material composed of Am and nanofibers as a graft for urinary bladder augmentation in a rat model.Material and MethodsSandwich-structured biocomposite material was constructed from frozen Am and covered on both sides with two-layered membranes prepared from electrospun poly-(L-lactide-co-E-caprolactone) (PLCL). Wistar rats underwent hemicystectomy and bladder augmentation with the biocomposite material.ResultsImmunohistohemical analysis (hematoxylin and eosin [H&E], anti-smoothelin and Masson’s trichrome staining [TRI]) revealed effective regeneration of the urothelial and smooth muscle layers. Anti-smoothelin staining confirmed the presence of contractile smooth muscle within a new bladder wall. Sandwich-structured biocomposite graft material was designed to regenerate the urinary bladder wall, fulfilling the requirements for normal bladder tension, contraction, elasticity and compliance. Mechanical evaluation of regenerated bladder wall conducted based on Young’s elastic modulus reflected changes in the histological remodeling of the augmented part of the bladder. The structure of the biocomposite material made it possible to deliver an intact Am to the area for regeneration. An unmodified Am surface supported regeneration of the urinary bladder wall and the PLCL membranes did not disturb the regeneration process.ConclusionsAm reinforcement with electrospun nanofibers offers a new strategy to improve Am mechanical resistance without affecting its unique bioactivity profile.

Highlights

  • Every year, thousands of advanced surgical procedures are performed to replace or repair ureters, urinary bladders or urethrae that are damaged through disease or trauma

  • Sandwich-structured biocomposite material was constructed from frozen amniotic membrane (Am) and covered on both sides with two-layered membranes prepared from electrospun poly-(L-lactide-co-Ecaprolactone) (PLCL)

  • Autografts derived from buccal mucosa and foreskin have an application in urethroplasty [3]

Read more

Summary

Introduction

Thousands of advanced surgical procedures are performed to replace or repair ureters, urinary bladders or urethrae that are damaged through disease or trauma. Phase II studies conducted in children and adolescents with spina bifida showed lack of bladder compliance or capacity improvements after urinary bladder augmentation with an autologous cell seeded biodegradable scaffold [6]. Disregarding this unsatisfactory functional characteristic, the phase II study proved the feasibility of using an artificially fabricated material for human urinary bladder replacement at long-term follow-up. This is encouragement for us to look for new technologies and biomaterials that may be used for the reconstruction of urinary tracts

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.