Abstract
Twenty-two new alkenyldiarylmethanes (ADAMs) were synthesized and evaluated for inhibition of HIV-1 replication. The most potent compound proved to be methyl 3',3"-dichloro-4',4"-dimethoxy-5', 5"-bis(methoxycarbonyl)-6,6-diphenyl-5-hexenoate (ADAM II), which displayed an EC50 of 13 nM for inhibition of the cytopathic effect of HIV-1RF in CEM-SS cells. ADAM II inhibited HIV-1 reverse transcriptase with an IC50 of 0.3 microM but was inactive as an inhibitor of HIV-1 attachment/fusion to cells, protease, integrase, and the nucleocapsid protein. Molecular target-based and cell-based assays revealed that ADAM II acted biologically as a nonnucleoside reverse transcriptase inhibitor (NNRTI). ADAM II inhibited replication of a wide variety of laboratory, clinical, and clade-representative isolates of HIV-1 in T cell lines and cultures of peripheral blood mononuclear cells or monocyte/macrophages. Mutations that conferred resistance to ADAM II clustered at residues 101, 103, 108, 139, 179, 181, and 188, which line the nonnucleoside binding pocket of HIV-1 reverse transcriptase. However, HIV-1 NL4-3 strain expressing a mutation at residue 100 of reverse transcriptase, and an AZT-resistant virus, displayed increased sensitivity to ADAM II. Thus, ADAM II could serve as an adjunct therapy to AZT and NNRTIs that select for L100I resistance mutations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.