Abstract

AbstractMin-implication fuzzy relation equations based on Boolean-type implications can also be viewed as a way of implementing fuzzy associative memories with perfect recall. In this paper, fuzzy associative memories with perfect recall are constructed, and new on-line learning algorithms adapting the weights of its interconnections are incorporated into this neural network when the solution set of the fuzzy relation equation is non-empty. These weight matrices are actually the least solution matrix and all maximal solution matrices of the fuzzy relation equation, respectively. The complete solution set of min-implication fuzzy relation equation can be determined by the maximal solution set of this equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.