Abstract

We propose a new adaptive and composite Barzilai–Borwein (BB) step size by integrating the advantages of such existing step sizes. Particularly, the proposed step size is an optimal weighted mean of two classical BB step sizes and the weights are updated at each iteration in accordance with the quality of the classical BB step sizes. Combined with the steepest descent direction, the adaptive and composite BB step size is incorporated into the development of an algorithm such that it is efficient to solve large-scale optimization problems. We prove that the developed algorithm is globally convergent and it R-linearly converges when applied to solve strictly convex quadratic minimization problems. Compared with the state-of-the-art algorithms available in the literature, the proposed step size is more efficient in solving ill-posed or large-scale benchmark test problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.