Abstract
Step size determination (also known as line search) is an important component in effective algorithmic development for solving the traffic assignment problem. In this paper, we explore a novel step size determination scheme, the Barzilai-Borwein (BB) step size, and adapt it for solving the stochastic user equilibrium (SUE) problem. The BB step size is a special step size determination scheme incorporated into the gradient method to enhance its computational efficiency. It is motivated by the Newton-type methods, but it does not need to explicitly compute the second-order derivative. We apply the BB step size in a path-based traffic assignment algorithm to solve two well-known SUE models: the multinomial logit (MNL) and cross-nested logit (CNL) SUE models. Numerical experiments are conducted on two real transportation networks to demonstrate the computational efficiency and robustness of the BB step size. The results show that the BB step size outperforms the current step size strategies, i.e., the Armijo rule and the self-regulated averaging scheme.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.