Abstract
Neutrophils are known to contribute in many aspects of tumor progression and metastasis. The presence of neutrophils or neutrophil-derived mediators in the tumor microenvironment has been associated with poor prognosis in several types of solid tumors. However, the effects of classical cancer treatments such as radiation therapy on neutrophils are poorly understood. Furthermore, the cellular composition and distribution of immune cells in the tumor is of increasing interest in cancer research and new imaging technologies allow to perform more complex spatial analyses within tumor tissues. Therefore, we aim to offer novel insight into intra-tumoral formation of cellular neighborhoods and communities in murine breast cancer. To address this question, we performed image mass cytometry on tumors of the TS/A breast cancer tumor model, performed spatial neighborhood analyses of the tumor microenvironment and quantified neutrophil-extracellular trap degradation products in serum of the mice. We show that irradiation with 2 × 8 Gy significantly alters the cellular composition and spatial organization in the tumor, especially regarding neutrophils and other cells of the myeloid lineage. Locally applied radiotherapy further affects neutrophils in a systemic manner by decreasing the serum neutrophil extracellular trap concentrations which correlates positively with survival. In addition, the intercellular cohesion is maintained due to radiotherapy as shown by E-Cadherin expression. Radiotherapy, therefore, might affect the epithelial–mesenchymal plasticity in tumors and thus prevent metastasis. Our findings underscore the growing importance of the spatial organization of the tumor microenvironment, particularly with respect to radiotherapy, and provide insight into potential mechanisms by which radiotherapy affects epithelial–mesenchymal plasticity and tumor metastasis.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have