Abstract

Neutrophils are the first leukocyte population to be recruited from the circulation following tissue injury or infection, where they play key roles in host defense. However, recent evidence indicates recruited neutrophils can also enter lymph and shape adaptive immune responses downstream in draining lymph nodes. At present, the cellular mechanisms regulating neutrophil entry to lymphatic vessels and migration to lymph nodes are largely unknown. Here, we have investigated these events in an in vivo mouse Mycobacterium bovis bacillus Calmette-Guérin vaccination model, ex vivo mouse dermal explants, and in vitro Transwell system comprising monolayers of primary human dermal lymphatic endothelial cells. We demonstrate that neutrophils are reliant on endothelial activation for adhesion, initially via E-selectin and subsequently, by integrin-mediated binding to ICAM-1 and VCAM-1, combined with CXCL8-dependent chemotaxis. Moreover, we reveal that integrin-mediated neutrophil adhesion plays a pivotal role in subsequent transmigration by focusing the action of matrix metalloproteinases and the 15-lipoxygenase-1-derived chemorepellent 12(S)-hydroxyeicosatetraenoic acid at neutrophil:endothelial contact sites to induce transient endothelial junctional retraction and rapid, selective neutrophil trafficking. These findings reveal an unexpectedly intimate collaboration between neutrophils and the lymphatic vessel endothelium, in which these phagocytic leukocytes act as pathfinders for their own transit during inflammation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.