Abstract

Viral myocarditis (VM) is an inflammatory pathology of the myocardium triggered by a viral infection that may cause sudden death or heart failure (HF), especially in the younger population. Current treatments only stabilize and improve cardiac function without resolving the underlying inflammatory cause. The factors that induce VM to progress to HF are still uncertain, but neutrophils have been increasingly associated with the negative evolution of cardiac pathologies. The present study investigates the contribution of neutrophils to VM disease progression in different ways. In a coxsackievirus B3- (CVB3) induced mouse model of VM, neutrophils and neutrophil extracellular traps (NETs) were prominent in the acute phase of VM as revealed by enzyme-linked immunosorbent assay analysis and immunostaining. Anti-Ly6G-mediated neutrophil blockade starting at model induction decreased cardiac necrosis and leucocyte infiltration, preventing monocyte and Ly6CHigh pro-inflammatory macrophage recruitment. Furthermore, genetic peptidylarginine deiminase 4-dependent NET blockade reduced cardiac damage and leucocyte recruitment, significantly decreasing cardiac monocyte and macrophage presence. Depleting neutrophils with anti-Ly6G antibodies at 7 days post-infection, after the acute phase, did not decrease cardiac inflammation. Collectively, these results indicate that the repression of neutrophils and the related NET response in the acute phase of VM improves the pathological phenotype by reducing cardiac inflammation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.