Abstract

The immune systems and chronic inflammation are implicated in the pathogenesis of dilated cardiomyopathy (DCM) and heart failure. However, the significance of neutrophil extracellular traps (NETs) in heart failure remains to be elucidated. We enrolled consecutive 62 patients with heart failure with idiopathic DCM who underwent endomyocardial biopsy. Biopsy specimens were subjected to fluorescent immunostaining to detect NETs, and clinical and outcome data were collected. Ex vivo and in vivo experiments were conducted. The numbers of NETs per myocardial tissue area and the proportion of NETs per neutrophil were significantly higher in patients with DCM compared with non-DCM control subjects without heart failure, and the numbers of NETs were negatively correlated with left ventricular ejection fraction. Patients with DCM with NETs (n=32) showed lower left ventricular ejection fraction and higher BNP (B-type natriuretic peptide) than those without NETs (n=30). In a multivariable Cox proportional hazard model, the presence of NETs was independently associated with an increased risk of adverse cardiac events in patients with DCM. To understand specific underlying mechanisms, extracellular flux analysis in ex vivo revealed that NETs-containing conditioned medium from wild-type neutrophils or purified NET components led to impaired mitochondrial oxygen consumption of cardiomyocytes, while these effects were abolished when PAD4 (peptidyl arginine deiminase 4) in neutrophils was genetically ablated. In a murine model of pressure overload, NETs in myocardial tissue were predominantly detected in the acute phase and persisted throughout the ongoing stress. Four weeks after transverse aortic constriction, left ventricular ejection fraction was reduced in wild-type mice, whereas PAD4-deficient mice displayed preserved left ventricular ejection fraction without inducing NET formation. NETs in myocardial tissue contribute to cardiac dysfunction and adverse outcomes in patients with heart failure with DCM, potentially through mitochondrial dysfunction of cardiomyocytes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.