Abstract

The inboard shielding of a fusion reactor can be a crucial issue due to the limited space available in a tokamak configuration. It is necessary to assess the inboard shielding capability of DEMO for its initial design. In this paper, 1D and 3D neutronics models were developed based on a reference design of the Chinese Fusion Engineering Testing Reactor (CFETR). The neutron wall load (NWL) is in the range of 1.5–3MW/m2 and the inboard shielding thickness is constrained within 40–70cm in order to achieve the tritium self-sufficiency of the reactor. Referring to the detailed design of the ITER Toroidal Field Coils (TFCs) and using radiation hardening technology developed for ITER, the inboard blanket shielding capability and nuclear responses of the TFC are investigated for both FLiBe and Li4SiO4 breeding blanket concepts. The impact of the gaps on shielding performance is discussed. Some suggestions on improving the inboard shielding performance for DEMO are also proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.