Abstract

Chinese Fusion Engineering Test Reactor (CFETR) is a new test tokamak device being designed in China aimed to bridge gaps between ITER and DEMO. As one of the candidate tritium breeding blankets, a conceptual design scheme of the helium cooled solid breeder blanket has been proposed and a series of preliminary analyses have been carried out to access the performances. However, both the required global tritium breeding ratio for CFETR not less than 1.2 and its poor working conditions under intense radiation need further thorough neutronics analyses and optimizations during the design phase. In this work, first, three-dimensional neutronics model of CFETR was built, and the neutron wall loading and global TBR were obtained. The nuclear and thermal calculation results were automatically coupled, which could make the neutronics calculation results more accurate and guaranteed they could always satisfy the corresponding thermal limits during the whole process. Then, the tritium breeding and shielding performances of both the outboard and inboard equatorial blanket modules were optimized for the comprehensive optimal schemes. The influences of Be/W armors on the shielding performance and TBR were also investigated. Finally, the nuclear heating rates and the neutron flux densities in different components were calculated based on the obtained comprehensive optimal scheme. In this paper, the neutronics analyses and optimizations verified that the optimized conceptual design could well meet the tritium self-sufficiency and neutron shielding requirements, and this could provide a valuable reference for the further thermal-hydraulic analysis and structural optimization of the CFETR helium cooled solid breeder blanket.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call