Abstract

Compact stars such as neutron stars (NS) can have either hadronic or exotic states like strange quark or colour superconducting matter. Stars can also have a quark core surrounded by hadronic matter, known as hybrid stars (HS). The HS is likely to have a mixed phase in between the hadron and the quark phases. Observational results suggest huge surface magnetic field in certain NS. Therefore, we study here the effect of strong magnetic field on the respective equation of states (EOS) of matter under extreme conditions. We further study the hadron–quark phase transition in the interiors of NS giving rise to HS in the presence of strong magnetic field. The hadronic matter EOS is described based on RMF theory and we include the effects of strong magnetic fields leading to Landau quantization of the charged particles. For quark phase, we use the simple Massachusetts Institute of Technology (MIT) bag model, assuming density-dependent bag pressure and magnetic field. The magnetic field strength increases from the surface to the centre of the star. We construct the intermediate mixed phase using Glendenning conjecture. The magnetic field softens the EOS of both the matter phases. We finally study, the mass–radius relationship for such types of mixed HS, calculating their maximum mass, and compare them with the recent observations of pulsar PSR J1614-2230, which is about 2 solarmass.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call