Abstract

Neutron radiography (NR) is performed at the Institute for Energy Technology (IFE) in Norway since the late 1970s. The application of the non-destructive method was to acquire post-irradiation examination (PIE) data (e.g. fuel integrity and hydrogen up-take in cladding) from safety and integrity tests of nuclear fuels performed under the Organization for Economic Co-operation and Development (OECD) Halden Reactor Project (HRP). The method was later applied under re-fabrication and instrumentation operations of experimental nuclear fuel rods prior to testing in Halden Boiling Water Reactor (HBWR), and for a variety of PIE projects, e.g. reactor power ramp testing, PCI failure detection and fuel degradation experiments. Neutron radiography has also proved to be a very useful tool for examination of nuclear fuels irradiated in the Loss-of-Coolant Accident (LOCA) experimental series initiated in the early 2000s. Neutron tomography data is acquired while an increased international focus arose on fuel fragmentation, fuel relocation and fuel dispersal processes that occur during the LOCA events for high burn-up nuclear fuels. Hydrogen up-take of the fuel cladding, fuel pellet-clad bonding condition, fuel fragmentation, particle size distributions, and other features obtained from neutron tomography data are quite relevant for reactor core safety impact study of LOCA events simulated in the HBWR. Neutron tomography studies of LOCA tested fuel were done in cooperation with the SCK·CEN institute in Mol, Belgium, and the University of Antwerp in Belgium. It’s interesting to observe that the image reconstruction results obtained from the SART method are quite good regarding the relatively few sample rotations utilized under acquisition of neutron radiography projections in the tomography studies of the LOCA examination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.