Abstract

Calculations of the yield of neutrons due to the interaction of protons on a deuterium gas target have been carried out for the primary p – d breakup reaction as well as for the secondary processes due to nuclear reactions induced by the elastically scattered protons and deuterons. The experimental conditions of Bowman et al. reported in a recent work were simulated with respect to the measurements of neutron yields in the proton energy range 7 to 17 MeV. It is found that the primary breakup reaction is the main source of neutron production and the contribution to the neutron yield from the secondary processes is quite small, being of the order of 1% to 2%. Thus, the discrepancy reported by Bowman et al. between the measured neutron yields and the theoretical calculations based on the primary breakup reaction alone cannot be explained by the inclusion of secondary processes. The possible reasons for the observed discrepancy are discussed. The calculations were extended up to Ep = 100 MeV. The conclusion drawn by Bowman et al. regarding the energy cost per neutron at Ep = 100 MeV by extrapolating the empirical function fitted to the experimental data measured up to 17 MeV is not borne out by the present calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.