Abstract
Detection of secondary D(t, n)4He neutrons produced when thin argon or krypton gas shells implode on a deuterium gas target is a very challenging task because the secondary neutron yield is a small fraction of the primary neutron yield and because the implosion is often accompanied by an intense hard X-ray burst. We built a large volume neutron time of flight (nTOF) detector using liquid scintillator (xylene solvent with small quantities of wavelength shifting PPO + bis-MSB fluors) in an attempt to increase the detection probability for secondary neutrons in our staged Z-pinch experiments at the 1 MA Zebra pulsed-power generator. Two fast, gated microchannel plate photomultiplier tubes detect the light created in 21 liters of liquid. The hard X-rays were successfully suppressed in the recorded nTOF traces, but we found no evidence of secondary neutrons. The signal quality from the primary D(d, n)3He neutrons was higher compared to the signal quality from a plastic scintillator nTOF, thus providing a more reliable estimate of the deuterium ion temperature at the pinch stagnation time. Cross-calibration with a silver activation detector enables standalone neutron yield measurement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.