Abstract

In this investigation, epoxy resin with a low viscosity amine-based curing agent was chosen as matrix and additives were added to epoxy resin using low speed stirring with ultrasonic waves approach. The chemical stability of resin during fabrication of composites was studied with Fourier transform infrared spectroscopy (FTIR). The effect of B4C particle size (20 and 150µm) on neutron shielding was investigated. Besides, in order to develop the high performance composites, the effect of ATH (flame retardant) and WO3 powders (for shielding from against gamma rays) on neutron shielding property is considered. The neutron experiments were based on foil activation analysis in thermal column of Tehran Research Reactor (TRR). According to experimental data, required shield thickness (B4C, 150µm, 3wt%) for 80% absorption of neutron fluence was calculated about 9.8mm. Consequently, data show thermal neutron absorption is dependent also on the size of the boron compound filler and show a significant enhancement in shielding performance when using smaller particle size of B4C filler. Furthermore, data obviously show that the neutron attenuation coefficient of reinforced composites increases to 0.345cm−1 for B4C (20µm, 5wt%)/ Epoxy composite shield. As clearly data indicate, adding WO3 and ATH additive had a significant influence on the thermal neutron attenuation property and hybrid shield shows an enhancement of more than 60% in shielding performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.