Abstract

Emerging electrochemical systems relevant to energy applications including redox targeted flow batteries rely on chemical redox of solid electroactive materials using dissolved redox couples. One configuration to facilitate contact between the redox shuttles and solid material which is volume efficient is a packed bed reactor. While methods have been reported to assess the overall progression by analysis of the packed bed reactor effluent, herein analysis of the spatial progression of the chemical redox will be reported. Combination of neutron and x-ray tomography enabled assessing the pore and particle structure in the packed bed reactor and the spatial homogeneity of the reaction at different overall extents of conversion of the reactor bed. These characterization tools provide methods to probe the chemical redox processes occurring within the reactor environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.