Abstract
Within the scope of the conversion process from HEU to LEU of the Jamaican SLOWPOKE-2 reactor (JM-1), the effects of the neutron fluence on the beryllium reflector composition, and the corresponding effect on reactivity throughout the life of the reactor core, have been studied. Two different methods have been used and compared involving MCNP5, ORIGEN2.2, ORIGEN-S and COUPLE codes, reaching excellent agreement between them. The neutron flux profile and energy spectrum specific to the beryllium reflectors of this reactor design have been taken into account to analyze several scenarios, comprising both real and hypothetical conditions and involving different initial reflector compositions and reactor burnups. The analysis has been extended to provide estimates for the similar MNSR reactor design and compared with previously published predictions for the Syrian MNSR. The results show small overall reactivity effects in most cases, being dominated by impurity depletion as opposed to poison buildup, contrarily to what generally occurs in beryllium reflected reactors of far higher power and to MNSR predictions. The resulting reactivity increases are typically of less than 0.4mk for usual impurity levels and maximum HEU core burnup achievable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.