Abstract
General Fusion is building the Fusion Demonstration Plant to demonstrate a magnetized target fusion scheme in which a deuterium plasma is heated from 200eV to 10keV by piston-driven compression of a liquid-lithium liner. The multilayer coaxial time-of-flight neutron emission spectrometer is designed to measure the ion temperature near peak compression at which time the neutron yield will approach 1018 neutrons/s. The neutron energy distribution is expected to be Gaussian since the machine uses no neutral beam or radio-frequency heating. In this case, analysis shows that as few as 500 coincidence events should be sufficient to accurately measure the ion temperature. This enables a fast time resolution of 10 µs, which is required to track the rapid change in temperature approaching peak compression. We overcome the challenges of neutron pile-up and event ambiguity with a compact design having two layers of segmented scintillators. The error in the ion temperature measurement is computed as a function of the neutron spectrometer's geometric parameters and used to optimize the design for the case of reaching 10keV at peak compression.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have